Nowadays businesses perform in a digital world, having huge amounts of customer data to gather, save and proceed with scrutiny to detail. It’s not an easy option even for small-size companies, not to mention large enterprises. As business evolves, it also comes to the understanding that it’s possible to advertise more effectively and optimize ad budget.
In this case, we describe the solution provided by the OWOX BI team for a large company supplying an integrated suite of products for business. The suite includes tools for project management, documentation, CRM, telephony, calendars, and more. This client had challenges with spending the advertising budget more efficiently along with conducting a customer cohort analysis.
As the main challenge for marketing specialists was to reach more customers, everything was done to get as many service registrations as possible. After having gained a lot of active customers in the database, there appeared a necessity to improve the customer lifecycle. The marketing experts wanted to spend their advertising resources only on the target audience ready to buy their product since the customer acquisition costs have increased along with the business competition. Accordingly, most advertising efforts start paying off two months or more after the purchase, as most customers pay for their subscription on a monthly basis.
That’s why, to spend the advertising budget more efficiently, it was decided to conduct a customer cohort analysis. A cohort is a group of users sharing some common characteristics. By grouping users into cohorts based on the time of their first registration, marketers were looking to get more detailed information about what their customers do after they register on the website. Cohort analysis also helps calculate the revenue from each cohort, assess the effectiveness of customer acquisition campaigns, and optimize advertising costs. In addition, comparing behavioral data for the cohorts across different sources, channels, and campaigns helps understand which campaigns work better for customer acquisition and which ones improve retention rate and motivate users to register multiple portals.
Since there was a need in providing an effective cohort analysis, all the data should be merged into one system. Another challenge was constantly facing data sampling while working with the free Google Analytics version. The analysts wanted to avoid or at least minimize data sampling without having to export data by day.
Also, a number of specific metrics was required to be included in the cohort analysis report:
The goal was achieved by using the Google BigQuery cloud database in the following way:
The schema below shows the data flow:
Now let’s take a look at each step in detail.
Having considered all the alternative platforms, the company chose Google BigQuery for combining the data. The web user behavior data was imported to Google BigQuery using OWOX BI Pipeline. Here are the advantages of this solution:
Also with the help of OWOX BI Pipeline, the data from the advertising services is imported first into Google Analytics and then to Google BigQuery. The exception is for AdWords since Google Analytics has native integration with it.
The data about customers is collected in the CRM system. So, the data about the users who re-visit the website on the second day after registering the portal is exported to Google BigQuery. The data about active users and transactions is also exported to Google BigQuery via the Measurement Protocol.
With all the necessary data collected in Google BigQuery, the cohorts were created and the chosen metrics for each of the cohorts were calculated.
As customers pay for the products monthly, the period of time for analysis was set to a month. Cohorts were created based on the time of the first registration. This means that all users who registered, let’s say in July, belong to the same cohort. With metrics calculated in Google BigQuery, the table has the following structure:
As the data was exported from Google BigQuery (via the OWOX BI BigQuery Reports add-on), it was visualized in Google Sheets. This data is automatically updated every day and can be filtered by channel, source, campaign, and ad content.
The report demonstrates that the advertising initiatives not only help acquire new customers but also increase customer lifetime value, bringing back already-acquired customers who’re looking to add another portal.
In most cases, the advertising investments start to pay off in three months.
Though the report creation was a difficult task with lots of variable factors, the result was definitely worth it. A set of regular automated reports was created for the marketing department. Before that, marketing specialists had to create such reports manually, double-check everything, and spend a lot of time and effort.
Due to new reports, there also happened some interesting discoveries. For example, it was found that advertising not only works for the customer acquisition but it also contributes to customer retention and helps get more registrations from the same customer.