boodmo.com is the largest Indian online marketplace for auto parts. It’s a platform where auto parts dealers offer genuine and aftermarket auto components, and customers can find the components they need in just a couple of clicks. boodmo has more than 400 suppliers around the country and focuses on the domestic market: «We’re an Indian company, operating for Indian customers only.»
The product catalog on the boodmo.com features 18 categories of auto components from 42 popular brands (Audi, BMW, Ford, Honda etc.), a total of more than 35 million components. The website is adapted for mobile devices. Users can make purchases on their desktop computers, phones, tablets, or using a mobile app.
Founded in 2015, boodmo has already managed to occupy a free niche and become a major player in the Indian online market of auto spare parts. The company doesn’t intend to rest on its laurels and strives to become «the #1 online destination for everybody interested in the auto service industry." To achieve this goal, boodmo needs to expand their market coverage by developing an effective customer relationship model.
Acquiring customers is great, but retaining customers and turning them into loyal clients is even better. That’s why the boodmo team aimed to determine the LTV (lifetime value) of their customers and get a better understanding of how to improve it, by conducting a cohort analysis. To calculate the LTV, the company needs data about margins and customer acquisition costs for a certain time period. It’s also essential to compare cohort performance across different sources and medium. This will allow for better understanding of which channels bring the most loyal customers, and which turn out to be unprofitable, bringing less revenue than what was invested in them.
The company needed a single system to collect all the data required for the cohort analysis. Google Analytics is not suited for the challenge for a number of reasons:
To solve the challenge, analysts at boodmo:
This entire process is shown on the flowchart below:
Let’s take a closer look at each step:
boodmo sends user behavior data from their website to Google BigQuery using OWOX BI Pipeline. The product was chosen for the following reasons:
The data about margin and order completion rates is loaded to Google BigQuery from the company’s CRM system by using POST requests. Information about other ways to load data can be found in the BigQuery Documentation.
After consolidating the data in Google BigQuery, boodmo created user cohorts and calculated the metrics for each cohort. All the necessary calculations were performed in Google BigQuery using SQL queries and additional UDF functions (for more information, refer to the Google BigQuery Documentation).
Before proceeding with Step 3, let’s take a closer look at what cohort analysis is and what use it may have. In essence, cohort analysis is breaking users into cohorts and examining the behavior of each cohort at certain intervals. The basic difference between cohorts and segments is that cohorts are typically time-bound while segments are based on user behavior or characteristics (gender, age, location, device type etc.). In other words, users in a cohort share the same experience during a specific timeframe. An example of a cohort is, users who first visited the website in June. An example of a segment is, users who only visit the website on their tablets.
To conduct cohort analysis, it’s important to determine the timeframe over which a cohort will be built: a day, a week, a month, etc. The cohort’s distinctive feature (first visit, registration, first purchase, etc.) should be selected on the basis of what goals you strive to achieve and what metrics you’re going to analyze. For example, if the goal is to calculate and improve retention rate, cohorts may be created based on the date of the first visit, registration, or app install. If the goal is to determine the LTV, cohorts should be created based on the time of the first purchase.
Besides that, a company needs to decide on the reporting period, during which each cohort will be explored. In this way, cohort analysis will help determine how the key performance indicators, such as LTV and CAC, change over time in an individually taken cohort.
Cohort analysis would help boodmo solve the following two tasks:
boodmo chose Google Sheets to visualize cohort analysis reports, because the size of the report table changes dynamically, new cohorts should be calculated automatically, and the existing cohorts should be automatically supplemented with new data over time.
Google Apps Script was used to send the data from Google BigQuery to Google Sheets, build reports, and enable automatic updates and formatting of the reports. Google Apps Script is a JavaScript cloud scripting language that provides a way to add custom functions to Google Sheets and other Google apps.
The following functions were added to the report:
As a result, boodmo obtained a report that looks as follows:
The LTV and CAC metrics in the report were calculated as follows:
The green background color of the LTV cell in the report indicates that acquisition costs for the cohort 2016-12 were covered by the revenue they brought during the 3-month reporting period. Red cells indicate that LTV of users in the cohort is lower than CAC. If the indicators show that the acquisition costs are unlikely to pay off, it’s worth paying more attention to users in that cohort. For example, send these users a promo email.
In addition, the company can assess the LTV performance across different customer acquisition channels, and replace the inefficient channel (CAC is higher than LTV) with a more efficient one.
Add up more accuracy to your analysis with OWOX BI!
TRY OWOX BI PIPELINE
Boodmo adopted a tiered loyalty program that incentivized customers to make repeat purchases, write reviews, and refer friends. This helped the company retain loyal customers and attract new ones.
Boodmo is an online marketplace for car spare parts in India. It offers a wide range of genuine and aftermarket parts for different car models.